# **TRANSITION ELEMENTS**

The periodic table consist of **4** blocks of elements :

- (S & P) blocks : they are called "representative elements " Which are found on both sides of the periodic table .
- (d & f) blocks : they are called "Transition elements " Which occupy the middle of periodic table between (s) and (p) blocks .



The Transition Elements in the periodic table :

- including more than 60 elements (more than half the number of elements in the periodic table)

- start appear from fourth period.

Chemist

### The Transition Elements divided into :

- 1- Main transition elements [elements of d-block] (we will study it)
- 2- Inner transition elements [ elements of f-block ]



# The Main Transition Elements [elements of d-block]

- They occupy the middle block of the table which contains the elements with the outermost electrons occupying the (d) sublevel .
- they divided in the periodic table : vertically & horizontally :

# Vertically

• the main transition elements contains **ten vertical columns** (**G**. **(**)) as the d-sublevel can take up to ten electrons.

### 1- These columns starts from :

• The first columns which contains elements which are ended with  $ns^2$ ,  $(n - 1)d^1$ 

#### Then the d-sublevel is filled gradually with electrons until reach to :

- The last columns which contains elements which are ended with  $ns^2$ ,  $(n 1)d^{10}$
- 2- These columns from left to right in the periodic table start with the Groups :

| number of | 3B    | 4B   | 5B | 6B   | 7B    |   | 8    |    | 1B | 2B   |
|-----------|-------|------|----|------|-------|---|------|----|----|------|
| the Group | III B | IV B | VВ | VI B | VII B |   | VIII |    | ΙB | II B |
|           | 3     | 4    | 5  | 6    | 7     | 8 | 9    | 10 | 11 | 12   |

Ň

**bec.** in these three groups , the similarity in properties between the horizontal elements is more than the vertical elements .

( or bec. their elements are similar horizontally more than vertically )



# horizontally

The Main Transition Elements can be divided into four series which are :

| 1 <sup>st</sup> transition series                                                                                                                                             | 2 <sup>nd</sup> transition series                                                                                                                                  | 3 <sup>rd</sup> transition series                                                                                                                                                                 | 4 <sup>th</sup> transition series                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| placed in period 4                                                                                                                                                            | Placed in period 5                                                                                                                                                 | Placed in period 6                                                                                                                                                                                | Placed in period 7                                                                                                                                                     |
| • elements in which<br>the sublevel ( <b>3d</b> ) is<br>filled successively.                                                                                                  | • elements in which<br>the sublevel ( <b>4d</b> ) is<br>filled successively.                                                                                       | • elements in which<br>the sublevel ( <b>5d</b> ) is<br>filled successively.                                                                                                                      | • elements in which<br>the sublevel ( <b>6d</b> ) is<br>filled successively.                                                                                           |
| • starts with :<br>Scandium<br><sub>21</sub> Sc:[Ar] , 4s <sup>2</sup> , 3d <sup>1</sup><br>• ended with :<br>Zinc<br><sub>30</sub> Zn:[Ar],4s <sup>2</sup> ,3d <sup>10</sup> | • starts with :<br>Yttrium<br>$_{39}$ Y:[Kr] , 5s <sup>2</sup> , 4d <sup>1</sup><br>• ended with :<br>Cadmium<br>$_{48}$ Cd:[Kr],5s <sup>2</sup> ,4d <sup>10</sup> | • starts with :<br>Lanthanum<br><sub>57</sub> La:[Xe],6s <sup>2</sup> , 5d <sup>1</sup><br>• ended with :<br>Mercury<br><sub>80</sub> Hg:[Xe],6s <sup>2</sup> ,4f <sup>14</sup> ,5d <sup>10</sup> | <ul> <li>starts with :<br/>Actinium<br/><sub>89</sub>La:[Rn],7s<sup>2</sup>, 6d<sup>1</sup></li> <li>and in which<br/>the elements<br/>discovered gradually</li> </ul> |
| consist of 10     elements                                                                                                                                                    | consist of 10     elements                                                                                                                                         | consist of 10     elements                                                                                                                                                                        |                                                                                                                                                                        |

# The first Transition Series

| Group  | III B            | IV B             | VΒ              | VI B             | VII B            |                  | VIII             |                  | ΙB               | II B             |
|--------|------------------|------------------|-----------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| Symbol | <sub>21</sub> Sc | <sub>22</sub> Ti | <sub>23</sub> V | <sub>24</sub> Cr | <sub>25</sub> Mn | <sub>26</sub> Fe | <sub>27</sub> Co | <sub>28</sub> Ni | <sub>29</sub> Cu | <sub>30</sub> Zn |
| Name   | Scandium         | Titanium         | Vanadium        | Chromium         | Manganese        | Iron             | Cobalt           | Nickel           | Copper           | Zinc             |
| Wt %   | 0.0026           | 0.66             | 0.02            | 0.014            | 0.11             | 5.1              | 0.003            | 0.0089           | 0.0068           | 0.0078           |

All of these elements form nearly **7%** of the weight of earth's crust, but they have high economic importance.

Ň

## Electronic configuration and oxidation states of the first transition series : First :

# Electronic configurations of the first transition series in atomic state

- elements of the first transition series are located in the 4<sup>th</sup> period after calcium  $_{20}Ca$  whose electronic configuration is  $Ca_{20}$ : [ $_{18}Ar$ ],  $4s^2$
- (3d) sublevel is filled with electrons in sequence by single electron in each orbital till manganese (3d<sup>5</sup>), after manganese the pairing of electrons takes place in each orbital till zinc (3d<sup>10</sup>) [according to Hund's rule]

 $\hfill The general electronic configuration : [18Ar] , 4s^2 , 3d ^{1:10}$ 

| element           | Electronic configuration                                | element           | Electronic configuration                         |
|-------------------|---------------------------------------------------------|-------------------|--------------------------------------------------|
| <sub>21</sub> Sc  | $[_{18}Ar]$ , 4s <sup>2</sup> , 3d <sup>1</sup>         | <sub>26</sub> Fe  | $[_{18}Ar]$ , 4s <sup>2</sup> , 3d <sup>6</sup>  |
| <sub>22</sub> Ti  | $[_{18}Ar]$ , $4s^2$ , $3d^2$                           | <sub>27</sub> Co  | $[_{18}Ar]$ , $4s^2$ , $3d^7$                    |
| <sub>23</sub> V   | $[_{18}Ar]$ , $4s^2$ , $3d^3$                           | <sub>28</sub> Ni  | $[_{18}Ar]$ , $4s^2$ , $3d^8$                    |
| <sub>24</sub> Cr* | $[_{18}Ar]$ , $4s^1$ , $3d^5$                           | <sub>29</sub> Cu* | $[_{18}Ar]$ , $4s^1$ , $3d^{10}$                 |
| <sub>25</sub> Mn  | [ <sub>18</sub> Ar] , 4s <sup>2</sup> , 3d <sup>5</sup> | <sub>30</sub> Zn  | $[_{18}Ar]$ , 4s <sup>2</sup> , 3d <sup>10</sup> |

### From the above table it is clear that :

Chemistry

| • the | electro          | n configu | uration of :                              |   |     |                                           |              |
|-------|------------------|-----------|-------------------------------------------|---|-----|-------------------------------------------|--------------|
|       | $Cr_{24}$        | is not    | $[Ar]$ , $4s^2$ , $3d^4$                  | X | but | $[Ar]$ , $4s^1$ , $3d^5$                  | $\checkmark$ |
| and   | Cu <sub>29</sub> | is not    | [Ar] , 4s <sup>1</sup> , 3d <sup>10</sup> | × | but | [Ar] , 4s <sup>1</sup> , 3d <sup>10</sup> | $\checkmark$ |

### So Cr & Cu are anomalous from the expected electronic configuration (

in Cr atom 4s & 3d are half filled **but** in Cu atom 4s is half filled & 3d is completely filled : **That due to** the atom has more stability (low energy) when 3d sublevel is half filled  $(3d^5)$  as in Cr atom <u>or</u> completely filled  $(3d^{10})$  as in Cu atom.

the atom or ion becomes more stable (i.e. less energy) when (d) sublevel is :
 Empty (d<sup>o</sup>)
 Half filled (d<sup>5</sup>)
 Completely filled (d<sup>10</sup>)
 half or completely filling of a given sublevel is not the only factor that causes the stability of the atom.

🥂 🕺 ÁBDALLAH ASHRAF





**Explain**: Why iron (II) ion  $Fe^{2+}$  is easily oxidized to iron (III) ion  $Fe^{3+}$ 

While Mn (II) ion Mn<sup>2+</sup> is difficult oxidized to Mn (III) ion Mn<sup>3+</sup> ? (

### Answer:



Bec.  $Fe^{3+}$  ion is more stable as the 3d sublevel is half-filled  $(3d^5)$ ,

so  $Fe^{2+}$  ion is easily oxidized to  $Fe^{3+}$  ion

as the reaction goes toward the formation of more stable compound.

#### While in case of manganese :



Bec.  $Mn^{2+}$  ion is more stable as the (3d) sublevel is half-filled (3d<sup>5</sup>),

so  $Mn^{2+}$  ion is difficult oxidized to  $Mn^{3+}$  ion

as the reaction goes toward the formation of more stable compound.

#### don't forget that :

| Oxidation process                                   | Reduction process                                    |
|-----------------------------------------------------|------------------------------------------------------|
| Process of losing electrons & increasing +ve charge | Process of gaining electrons & decreasing +ve charge |



#### Second :

Oxidation state of the first transition series

| III B            | IV B                            | V B                                                                                              | VI B                                                                                                                                                                                                                           | VII B                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                               | VIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                       | ΙB                                                    | II B                                                   |
|------------------|---------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|
| Sc               | Ti                              | V                                                                                                | Cr                                                                                                                                                                                                                             | Mn                                                                                                                                                                                                                                                                                                                                                                            | Fe                                                                                                                                                                                                                                                                                                                                                                                                                                            | Со                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ni                                                    | Cu                                                    | Zn                                                     |
|                  |                                 |                                                                                                  |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                       | Cu <sup>1+</sup>                                      |                                                        |
|                  | Ti <sup>2+</sup>                | V <sup>2+</sup>                                                                                  | Cr <sup>2+</sup>                                                                                                                                                                                                               | Mn <sup>2+</sup>                                                                                                                                                                                                                                                                                                                                                              | Fe <sup>2+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                              | Co <sup>2+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ni <sup>2+</sup>                                      | Cu <sup>2+</sup>                                      | Zn <sup>2+</sup>                                       |
| Sc <sup>3+</sup> | Ti <sup>3+</sup>                | V <sup>3+</sup>                                                                                  | Cr <sup>3+</sup>                                                                                                                                                                                                               | Mn <sup>3+</sup>                                                                                                                                                                                                                                                                                                                                                              | Fe <sup>3+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                              | Co <sup>3+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ni <sup>3+</sup>                                      |                                                       |                                                        |
|                  | Ti <sup>4+</sup>                | V <sup>4+</sup>                                                                                  | Cr <sup>4+</sup>                                                                                                                                                                                                               | Mn <sup>4+</sup>                                                                                                                                                                                                                                                                                                                                                              | Fe <sup>4+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                              | Co <sup>4+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ni <sup>4+</sup>                                      |                                                       |                                                        |
|                  |                                 | V <sup>5+</sup>                                                                                  | Cr⁵+                                                                                                                                                                                                                           | Mn <sup>5+</sup>                                                                                                                                                                                                                                                                                                                                                              | Fe <sup>5+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                              | Co⁵+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                       |                                                       |                                                        |
|                  |                                 |                                                                                                  | Cr <sup>6+</sup>                                                                                                                                                                                                               | Mn <sup>6+</sup>                                                                                                                                                                                                                                                                                                                                                              | Fe <sup>6+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                       |                                                       |                                                        |
|                  |                                 |                                                                                                  |                                                                                                                                                                                                                                | Mn <sup>7+</sup>                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                       |                                                       |                                                        |
|                  | III B<br>Sc<br>Sc <sup>3+</sup> | III B IV B<br>Sc Ti<br>Ti <sup>2+</sup><br>Sc <sup>3+</sup> Ti <sup>3+</sup><br>Ti <sup>4+</sup> | III B         IV B         V B           Sc         Ti         V           Ti <sup>2+</sup> V <sup>2+</sup> V <sup>2+</sup> Sc <sup>3+</sup> Ti <sup>3+</sup> V <sup>3+</sup> Ti <sup>4+</sup> V <sup>4+</sup> V <sup>5+</sup> | III B         IV B         V B         VI B           Sc         Ti         V         Cr           J         Ti <sup>2+</sup> V <sup>2+</sup> Cr <sup>2+</sup> Sc <sup>3+</sup> Ti <sup>3+</sup> V <sup>3+</sup> Cr <sup>3+</sup> Ti <sup>4+</sup> V <sup>4+</sup> Cr <sup>4+</sup> V         V <sup>5+</sup> Cr <sup>5+</sup> I         I         I         Cr <sup>6+</sup> | III B         IV B         V B         VI B         VII B           Sc         Ti         V         Cr         Mn           X         Y         Cr <sup>2+</sup> Mn <sup>2+</sup> Sc <sup>3+</sup> Ti <sup>3+</sup> V <sup>3+</sup> Cr <sup>3+</sup> Mn <sup>3+</sup> Ti <sup>4+</sup> V <sup>4+</sup> Cr <sup>4+</sup> Mn <sup>5+</sup> V         V         Cr <sup>6+</sup> Mn <sup>6+</sup> I         I         I         Mn <sup>7+</sup> | III B         IV B         V B         VI B         VII B           Sc         Ti         V         Cr         Mn         Fe           Sc         Ti         V         Cr <sup>2+</sup> Mn <sup>2+</sup> Fe <sup>2+</sup> Sc <sup>3+</sup> Ti <sup>3+</sup> V <sup>3+</sup> Cr <sup>3+</sup> Mn <sup>3+</sup> Fe <sup>3+</sup> Ti <sup>4+</sup> V <sup>4+</sup> Cr <sup>4+</sup> Mn <sup>4+</sup> Fe <sup>4+</sup> V <sup>5+</sup> Cr <sup>5+</sup> Mn <sup>5+</sup> Fe <sup>5+</sup> V <sup>5+</sup> Cr <sup>6+</sup> Mn <sup>6+</sup> Fe <sup>6+</sup> Nn <sup>7+</sup> Interval         Interval         Interval | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ |

#### From the above table it is clear that :

- [1] all elements of the first transition series have oxidation state (+2) by losing the two electrons of (4s) sublevel at the first (the farthest sublevel from the nucleus) while in the higher oxidation states they lose the electrons of (3d) gradually.
- [2] scandium cannot give oxidation state (+2) but only (+3) (

$$_{21}$$
Sc: [Ar], 4s<sup>2</sup>, 3d<sup>1</sup>  $\xrightarrow{-3e^-}$  Sc<sup>3+</sup>: [Ar]

due to it loses the 3 electrons of (4s & 3d) sublevels at once to reach empty (d) sublevel to be more stable .

[3] the oxidation states increases from scandium (3+) in group III B till reach a maximum (7+) in manganese in group VII B , after that the oxidation states decreases gradually till reach (+2) in zinc in group II B

NOTE

**we find that** the maximum oxidation state of any element not exceed the number of its group in periodic table except for the elements of group I B which contains [Cu, Ag & Au] they give the oxidation state (2+).

ĴĨ.

CHAPTER ONE

### **Oxidation States**

The transition metals are characterized by variable oxidation states (

bec. 4s and 3d subleves are very close in energy , so when atom of transition element

oxidized, the atom loses the electrons from (4s) then (3d) in sequence

Scientific evidence is : ionization potentials for the transition elements increases gradually.

#### Example :-

the graduation of the ionization potentials & oxidation states in  $_{23}V$  &  $_{21}Sc$ .





- scandium cannot give oxidation state (+4) ?
- cannot obtained Sc<sup>4+</sup> by chemical reaction under normal conditions ? (

Bec. that causes a breaking of energy level completely filled with electrons .

 While The representative metals (s-block & p-block) have only one oxidation state Like sodium that is Na<sup>+1</sup>, magnesium Mg<sup>2+</sup>, and aluminum Al<sup>3+</sup> and it is difficult to obtain Na<sup>2+</sup>, Mg<sup>3+</sup> and Al<sup>4+</sup>

Scientific evidence is : the increasing in the second ionization potential of sodium and the third of magnesium and the fourth of aluminum is very high.

#### Example :-

the graduation of the ionization potentials & oxidation state in  $_{\rm 13}\rm{AI}$  .



**Bec.** the increasing in the second ionization potential of Na and the third of Mg and the fourth of Al is very high **due to** that causes a breaking of energy level completely filled with electrons.

## Chemistry



#### Now : Transition element can be defined as follows :

#### The transition element :

it is the element in which the orbitals of  $\mathbf{d}$  or  $\mathbf{f}$  sublevels occupied with (contain) electrons but incompletely filled in atomic state or in any one of its oxidation states .

# Exercise 1 :

can we consider the coinage metals ( element of group IB ) as transition elements ?

### Answer:

Yes , they are transition elements (  $\ensuremath{\underline{\mathsf{G}}}\ensuremath{\,\underline{\mathsf{N}}}\ensuremath{\underline{\mathsf{N}}}$  )

**Because** the (d) sublevel is completely filled with electrons ( $d^{10}$ ) in their atomic state , but in the oxidation state (2+) or (3+) the sublevel (d) will be incompletely filled ( $d^9$ ) or ( $d^8$ ).

| Atomic state                                                                  |                               | 0> | kidation state                                                               |
|-------------------------------------------------------------------------------|-------------------------------|----|------------------------------------------------------------------------------|
| <sub>29</sub> Cu : [Ar] 4s <sup>1</sup> , 3d <sup>10</sup> ——                 | Oxidation( –2e <sup>-</sup> ) | >  | $Cu^{2+}$ : [Ar] $4s^0$ , $3d^9$                                             |
| <sub>49</sub> Ag : [Ar] 5s <sup>1</sup> , 4d <sup>10</sup> ——                 | Oxidation( $-2e^{-}$ )        | >  | Ag <sup>2+</sup> :[Kr] 5s <sup>0</sup> , 4d <sup>9</sup>                     |
| <sub>79</sub> Au:[Ar] 6s <sup>1</sup> , 4f <sup>14</sup> , 5d <sup>10</sup> - | Oxidation( –2e <sup>−</sup> ) | >  | Au <sup>2+</sup> : [Xe] 6s <sup>0</sup> , 4f <sup>14</sup> , 5d <sup>9</sup> |

# Exercise 2 :

# can we consider the metals zinc , cadmium and mercury (metals of group II B ) as transition elements ?

#### Answer :

No , they aren't transition elements (G.B)

**Because** the (d) sublevel is completely filled with electrons  $(d^{10})$  in both their atomic state and in oxidation state (+2).

Ĵĺ

| Atomic state                                                   | Oxidation state                                                                                                                   |
|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| <sub>30</sub> Zn: [Ar] 4s <sup>2</sup> , 3d <sup>10</sup>      | $\xrightarrow{\text{Oxidation}(-2e^{-})} \rightarrow \text{Zn}^{2+}: [Ar] 4s^0, 3d^{10}$                                          |
| $_{48}$ Cd: [Kr] 5s <sup>2</sup> , 4d <sup>10</sup>            | $\xrightarrow{\text{Oxidation}(-2e^{-})} \rightarrow \text{Cd}^{2+}: [\text{Kr}] 5s^0, 4d^{10}$                                   |
| <sub>80</sub> Hg: [Xe] 6s <sup>2</sup> , 4f <sup>14</sup> , 5d | <sup>10</sup> <u>Oxidation(<math>-2e^{-}</math></u> Hg <sup>2+</sup> : [Xe] 6s <sup>0</sup> , 4f <sup>14</sup> , 5d <sup>10</sup> |